Diagnostic sonography USB-based ultrasound probe technology with a smartphone (ultrasonography)

“Sonography” redirects here. For the tactile alphabet called “sonography”, see Night writing.

Diagnostic sonography (ultrasonography) is an ultrasound-based diagnostic imaging technique used to visualize subcutaneous body structures including tendons, muscles, joints, vessels and internal organs for possible pathology or lesions. Obstetric sonography is commonly used during pregnancy and is widely recognized by the public. There are a plethora of diagnostic and therapeutic applications practiced in medicine.

In physics the term “ultrasound” applies to all acoustic energy with a frequency above human hearing (20,000 hertz or 20 kilohertz). Typical diagnostic sonographic scanners operate in the frequency range of 2 to 18 megahertz, hundreds of times greater than the limit of human hearing. The choice of frequency is a trade-off between spatial resolution of the image and imaging depth: lower frequencies produce less resolution but image deeper into the body.

Orthogonal planes of a 3 dimensional sonographic volume with transverse and coronal measurements for estimating fetal cranial volume. [1], [2]

Sonography (ultrasonography) is widely used in medicine. It is possible to perform both diagnosis and therapeutic procedures, using ultrasound to guide interventional procedures (for instance biopsies or drainage of fluid collections). Sonographers are medical professionals who perform scans for diagnostic purposes. Sonographers typically use a hand-held probe (called a transducer) that is placed directly on and moved over the patient. A water-based gel is used to couple the ultrasound between the transducer and patient.

Sonography is effective for imaging soft tissues of the body. Superficial structures such as muscles, tendons, testes, breast and the neonatal brain are imaged at a higher frequency (7-18 MHz), which provides better axial and lateral resolution. Deeper structures such as liver and kidney are imaged at a lower frequency 1-6 MHz with lower axial and lateral resolution but greater penetration.

Medical sonography is used in, for example:

  • Cardiology; see echocardiography
  • Endocrinology
  • Gastroenterology
  • Gynaecology; see gynecologic ultrasonography
  • Neurology; for assessing blood flow and stenoses in the carotid arteries and the big intracerebral arteries;
  • Obstetrics; see obstetric ultrasonography
  • Ophthalmology; see A-scan ultrasonography, B-scan ultrasonography
  • Urology, to determine, for example, the amount of fluid retained in a patient’s bladder.
  • Musculoskeletal, tendons, muscles, nerves, and bone surfaces
  • Intravascular ultrasound (e.g. ultrasound guided fluid aspiration, fine needle aspiration, guided injections)
  • Intervenional; biopsy, emptying fluids, intrauterine transfusion (Hemolytic disease of the newborn)
  • Contrast-enhanced ultrasound

A general-purpose sonographic machine may be able to be used for most imaging purposes. Usually specialty applications may be served only by use of a specialty transducer. Most ultrasound procedures are done using a transducer on the surface of the body, but improved diagnostic confidence is often possible if a transducer can be placed inside the body. For this purpose, specialty transducers, including endovaginal, endorectal, and transesophageal transducers are commonly employed. At the extreme of this, very small transducers can be mounted on small diameter catheters and placed into blood vessels to image the walls and disease of those vessels.

Obstetrical ultrasound is commonly used during pregnancy to check on the development of the fetus.

In a pelvic sonogram, organs of the pelvic region are imaged. This includes the uterus and ovaries or urinary bladder. Men are sometimes given a pelvic sonogram to check on the health of their bladder and prostate. There are two methods of performing a pelvic sonography – externally or internally. The internal pelvic sonogram is performed either transvaginally (in a woman) or transrectally (in a man). Sonographic imaging of the pelvic floor can produce important diagnostic information regarding the precise relationship of abnormal structures with other pelvic organs and it represents a useful hint to treat patients with symptoms related to pelvic prolapse, double incontinence and obstructed defecation.[3]

In abdominal sonography, the solid organs of the abdomen such as the pancreas, aorta, inferior vena cava, liver, gall bladder, bile ducts, kidneys, and spleen are imaged. Sound waves are blocked by gas in the bowel, therefore there are limited diagnostic capabilities in this area. The appendix can sometimes be seen when inflamed eg: appendicitis.Scan ultra smart phone

Computer engineers at Washington University in St. Louis are bringing the minimalist approach to medical care and computing by coupling USB-based ultrasound probe technology with a smartphone, enabling a compact, mobile computational platform and a medical imaging device that fits in the palm of a hand.

William D. Richard, Ph.D., WUSTL associate professor of computer science and engineering, and David Zar, research associate in computer science and engineering, have made commercial USB ultrasound probes compatible with Microsoft Windows mobile-based smartphones, thanks to a $100,000 grant Microsoft awarded the two in 2008. In order to make commercial USB ultrasound probes work with smartphones, the researchers had to optimize every aspect of probe design and operation, from power consumption and data transfer rate to image formation algorithms.

As a result, it is now possible to build smartphone-compatible USB ultrasound probes for imaging the kidney, liver, bladder and eyes, endocavity probes for prostate and uterine screenings and biopsies, and vascular probes for imaging veins and arteries for starting IVs and central lines. Both medicine and global computer use will never be the same.

“You can carry around a probe and cell phone and image on the fly now,” said Richard. “Imagine having these smartphones in ambulances and emergency rooms. On a larger scale, this kind of cell phone is a complete computer that runs Windows. It could become the essential computer of the Developing World, where trained medical personnel are scarce, but most of the population, as much as 90 percent, have access to a cell phone tower.”

“Twenty-first century medicine is defined by medical imaging,” said Zar. “Yet 70 percent of the world’s population has no access to medical imaging. It’s hard to take an MRI or CT scanner to a rural community without power.”

Shrinking the electronics over 25 years

Zar said the vision of the new system is to train people in remote areas of the developing world on the basics of gathering data with the phones and sending it to a centralized unit many miles, or half a world away where specialists can analyze the image and make a diagnosis. Zar wrote the phone software and firmware for the probes; Richard came up with the low-power probe electronics design. He began working on ultrasound system designs 25 years ago, and in that span he has shrunk the electronics from cabinet-sized to a tiny circuit board one inch by three inches. A typical, portable ultrasound device may cost as much as $30,000. Some of these USB-based probes sell for less than $2,000 with the goal of a price tag as low as $500.

Another promising application is for caregivers of patients with Duchene’s Muscular Dystrophy. A degenerative disease that often strikes young boys and robs them of their lives by their late 20s, DMD is a degenerative disease for which there is no cure. The leading treatment to slow its progression is a daily dose of steroids. Patients often experience some side effects from steroids, which are dose related. These side effects include behavioral problems and weight gain. Researchers now know that physical changes in muscle tissue can indicate the efficacy of the steroids. Measuring these changes in muscle can be accomplished with ultrasound and may allow researchers to optimize steroid dosing to maximize efficacy while minimizing side effects.

“The idea is that caregivers, who otherwise have to transport a young person, often wheelchair bound, to a hospital or clinic on a regular basis for examination, can be trained to do ultrasound to track muscle condition,” Zar said. “This could lower the dosage to the least effective amount to further increase quality of life of the patient and the caregiver and hopefully extend life. We’re really excited about this application. The caregiver would only have to do a one-minute scan, transfer the data captured to the clinic, and the results would come back to the caregiver. A group at the WUSTL Medical School studying Duchene’s Muscular Dystrophy is very interested in our devices and hopes they can incorporate them into their research plans.”

Field trials in the Third World

Richard and Zar have discussed a potential collaboration with researchers at the Massachusetts Institute of Technology about integrating their probe-smartphone concept into a suite of field trials for medical applications in developing countries.

“We’re at the point of wanting to leverage what we’ve done with this technology and find as many applications as possible,” Richard said.

One such application could find its way to the military. Medics could quickly diagnose wounded soldiers with the small, portable probe and phone to detect quickly the site of shrapnel wounds in order to make the decision of transporting the soldier or treating him elsewhere on the field.

Richard and Zar demonstrated a fully functional smartphone-compatible USB ultrasound probe at Microsoft Research Techfest 2009 in February, and Zar presented the technology at the 2009 World Health Care Congress in Washington, D.C., April 14-16.


Adapted from materials provided by Washington University in St. Louis.

Related Posts Plugin for WordPress, Blogger...
Be Sociable, Share!

About the Author

has written 54 posts on this blog.

  • http://sonography-schools-info.com/diagnostic-medical-sonography-schools diagnostic medical sonography

    Hi,
    When you choose from among several diagnostic medical sonography
    schools, look for programs that offer significant clinical rotations as
    part of their curricula. Hands-on practice is important to future
    sonographers.

Copyright © 2017 Medical Technology & Gadgets Blog MedicalBuy.net. All rights reserved.
Proudly powered by WordPress. Developed by Deluxe Themes