07Feb

Microrobots Swim Through Vessels, Deform to Snake Through Tortuous Passageways

Researchers at Ecole polytechnique fédérale de Lausanne and ETH Zurich in Switzerland have developed tiny robots that could pave the way for advanced drug delivery. Inspired by bacteria, the microrobots can swim through fluids and modify their shape so as to pass through narrow blood vessels or intricate structures. The researchers hope that the devices could be useful in delivering drug cargoes to target tissues in the body.

Developing a microrobot that can successfully navigate vasculature is a significant challenge, with narrow, winding blood vessels providing plenty of places for a robot to get stuck. To address this, the Swiss researchers turned to nature and an origami-based folding technique.

“Nature has evolved a multitude of microorganisms that change shape as their environmental conditions change,” said Bradley Nelson, a researcher involved in the study. “This basic principle inspired our microrobot design. The key challenge for us was to develop the physics that describe the types of changes we were interested in, and then to integrate this with new fabrication technologies.”

However, the key to the robots’ ability to navigate through tight spaces lies in deformations the researchers introduced into their structure. These deformations allow the microrobots to automatically assume the most efficient shape when navigating a particular obstacle.

“Our robots have a special composition and structure that allow them to adapt to the characteristics of the fluid they are moving through,” said Selman Sakar, another researcher involved in the study. “For instance, if they encounter a change in viscosity or osmotic concentration, they modify their shape to maintain their speed and maneuverability without losing control of the direction of motion.”

www.medgadget.com

Leave a Reply

Your email address will not be published. Required fields are marked *